PAU Madrid. Matemáticas II. Año 2002. Examen de septiembre.

Opción B. Ejercicio 3. Valor: 3 puntos.

Sea A una matriz real cuadrada de orden n que verifica la igualdad $A^2=I,$ siendo I la matriz identidad de orden n.

Se pide:

- a) (1 punto) Expresar A^{-1} en términos de A.
- b) (1 punto) Expresar A^n en términos de A e I, para cualquier número natural n.
- c) (1 punto) Calcular a para que $A^2 = I$, siendo A la matriz:

$$A = \left[\begin{array}{cc} 1 & 1 \\ 0 & a \end{array} \right].$$

- a) $A^2=I\Rightarrow AA=I\Rightarrow A^{-1}=A,$ ya que A cumple la definición de $A^{-1}.$ Solución $A^{-1}=A$
- b) $n \text{ par } \Rightarrow n = 2m \Rightarrow A^n = A^{2m} = (A^2)^m = I^m = I$ $n \text{ impar } \Rightarrow n = 2m + 1 \Rightarrow A^n = A^{2m+1} = A^{2m}A = IA = A$ Solución Si n es par, $A^n = I$; si n es impar, $A^n = A$
- c) $A^2 = I \Rightarrow \begin{bmatrix} 1 & 1 \\ 0 & a \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1+a \\ 0 & a^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1+a=0 \\ a^2=1 \end{cases} \Rightarrow a = -1$ Solución a = -1