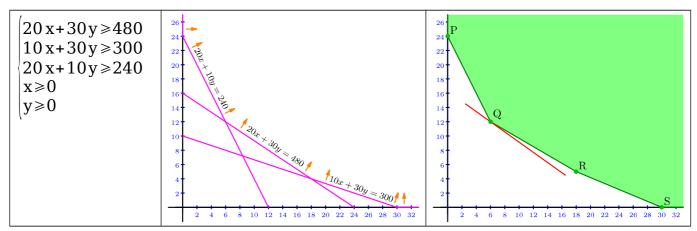
Licencia: CC0 1.0 Universal

Nivel 5 • Álgebra • Programación lineal • Teoría (04)

## **Enunciado**


Una empresa ganadera quiere asegurar que sus vacas reciben cada mes al menos 480 mg del compuesto A, 300 mg del compuesto B y 240 mg del compuesto C. Para ello puede utilizar dos productos comerciales: el producto X contiene raciones con 20 mg de A, 10 mg de B y 20 mg de C; el producto Y contiene raciones con 30 mg de A, 30 mg de B y 10 mg de C. Cada bolsa de X cuesta 50 euros y cada bolsa de Y cuesta 70 euros. Calcula cuántas bolsas de cada producto debe comprar para garantizar la correcta alimentación de sus vacas gastando lo menos posible.

## Resolución

Llamamos «x» e «y» a los números de bolsas de producto X e Y, respectivamente. Los dos números deben ser enteros no negativos.

- **★** Para garantizar el suministro de compuesto A debe ser  $20x+30y \ge 480$ .
- **★** Para garantizar el suministro de compuesto B debe ser  $10x+30y \ge 300$ .
- **\*** Para garantizar el suministro de compuesto C debe ser  $20x+10y \ge 240$ .
- **★** El gasto generado se calcula con la expresión «50x+70y».

Hay que calcular en qué punto de coordenadas enteras que sea solución del sistema de inecuaciones de abajo a la izquierda la función objetivo G(x,y)=50x+70y alcanza el menor valor.



Arriba en el centro mostramos el cálculo para averiguar el área factible y arriba a la derecha el área factible (que es infinita) marcando sus vértices, que calculamos:

$$\begin{vmatrix}
20x+10y=240 \\
x=0
\end{vmatrix} \Rightarrow ... \Rightarrow \begin{vmatrix}
x=0 \\
y=24
\end{vmatrix} \Rightarrow P = (0,24) \qquad \begin{vmatrix}
20x+10y=240 \\
20x+30y=480
\end{vmatrix} \Rightarrow ... \Rightarrow \begin{vmatrix}
x=6 \\
y=12
\end{vmatrix} \Rightarrow Q = (6,12)$$

$$\begin{vmatrix}
10x+30y=300 \\
20x+30y=480
\end{vmatrix} \Rightarrow ... \Rightarrow \begin{vmatrix}
x=18 \\
y=4
\end{vmatrix} \Rightarrow R = (18,4) \qquad \begin{vmatrix}
10x+30y=300 \\
y=0
\end{vmatrix} \Rightarrow ... \Rightarrow \begin{vmatrix}
x=30 \\
y=0
\end{vmatrix} \Rightarrow S = (30,0)$$

Calculamos el valor de la función objetivo en cada vértice:

- $P = (0.24) \Rightarrow G(0.24) = 50.0 + 70.24 = 1680$
- $\bullet$  Q = (6,12)  $\Rightarrow$  G(6,12) = 50·6+70·12 = 1140
- $R = (18,4) \Rightarrow G(18,4) = 50.18 + 70.4 = 1180$
- $\star$  S = (30,0)  $\Rightarrow$  G(30,0) = 50·30+70·0 = 1500

Vemos que en el punto Q = (6,12) se alcanza el menor valor, 1140.

Solución: hay que comprar 6 bolsas del producto X y 12 bolsas del producto Y.